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On the Momentum Theorem for a Continuous System of Variable Mass

James F. THORPE*
Bettis Atomic Power Laboratory, Pittsburgh, Pennsylvania

(Received April 4, 1962)

Theorems of linear momentum are derived for a control system having an arbitrary motion
in a continuous velocity field. The resulting equations are valid for a system of variable mass.
By allowing the control system to be atrest, the usual equations of fluid mechanics are obtained
as a special case; by allowing the control system to move with the fluid, the momentum equa-
tions for a system of constant mass are obtained as a special case. In this way, it is possible to
discuss a common, but incorrect, conception of the momentum equation for a system of

variable mass.

HE derivations of the theorem of linear
momentum, which are found in most text-
books, are unnecessarily restrictive in that the
results are limited either to systems of constant
mass or to control systems' fixed in space.
Furthermore, these derivations often result in a
misconception of the law of momentum for a
system of variable mass.

The purpose of the present paper is to derive
momentum theorems for a control system having
an arbitrary motion in a continuous velocity
field. One of the theorems will be derived in
terms of the motion of the center of mass of the
system under consideration. In this way the
correct laws of momentum for a system of
variable mass will be obtained and the usual
textbook theorems will be included as special
cases.

In the development which follows, the very
useful Leibnitz theorem (for differentiating a
volume integral) will be used frequently. This
theorem is

d 9f(xt)
——~/ f(r,i)d<r=[ do+/ f,vends, (1)
dat)s s Of s

where f is in general a tensor function, ¢ is a
control volume, s is the surface of ¢, n is a unit
outward normal vector at ds, v is the local
velocity of s at point ds, t is the position vector,
and ¢ is time.

In order to illustrate the physical picture,
assume f is a vector field. (See Fig. 1.) It is
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L A control system (or control surface) is a hypothetical
closed envelope, of arbitrary shape, through which fluxes
of momentum and energy may be observed.

important to understand that the control volume
does not necessarily move in the direction of the
field f, although, as a special case it might be
allowed to do so. Another special case of interest
is one in which the control volume o is at rest
(V = 0) .

Suppose that f is the mass density field p of a
fluid in motion. Then Eq. (1) has direct applica-
tion in fluid mechanics. The mass M of the fluid
which instantaneously occupies ¢ is then given by

M=/pda, (2)

and from Eq. (1)

iM 4 dp
———=——/pd¢r=/——da+/ pvends. {3)
dat  dt)e s Ot s

Let u be the velocity of the fluid. The diver-
gence theorem for the mass flux vector pu states

that
/pu'nds=/V'pud0'. 4)

Vector

n y

_F16. 1. Moving control surface ¢ in vector field f.
Underlined letters in figure correspond to boldface letters
in text,
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On adding Eqs. (3) and (4) we obtain
dM dp
——=/ (———l—v~pu)da—l—/p(v—u)-nds. (5)
dt a at 8

Let the local velocity of the control surface be
equal to the local fluid velocity (v=u). Then no
mass can cross the boundaries of o and it becomes
a closed system of constant mass M (a fluid
particle). Under these circumstances

/ [(90/00)-+v - puTdo=0. ©)

Now note that the first integral on the right side
of Eq. (5) is independent of the control surface
velocity v and in the second integral, the velocity
v is arbitrary. This means that Eq. (6) is a
general result. Since the size of the control
volume ¢ is arbitrary, it follows that

(8p/08)+V-pu=0, (N
and Eq. (5) reduces to

dM/dt= / p(v—1u)-nds. )

&

Equation (8) is an integral equation of con-
tinuity for a control volume in motion in the
fluid velocity field. For the special case in which
the control volume is at rest (v=0) it reduces to

dM/dt= — / pu-nds. (9)

Next, let f equal the momentum density of the
fluid pu. The momentum P of the fluid which
instantaneously occupies ¢ is then given by

P= / pudo,

and from Eq. (1)

dP d dpu
—=—/ puda'=/—do—[—/ puvends. (11)
dt dt)e s Of s

(10)

The divergence theorem for the momentum
flux tensor puu states that

/ puu-nds= / v puudo.

(12)
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On adding Eqgs. (11) and (12), we obtain

dP dput
——=/ <—~—+V-puu>da—l—/pu(v—u)-nds. (13)
dt s \ Of s

Expanding the integrand of the first integral and
applying Eq. (7) reduces Eq. (13) to

dpP du
—=/<p——|—pu-vu>da+ pu(v—u)-nds. (14)
dt « \ Of s

The acceleration field a of the fluid is defined by
a=du/di=(du/dt)+u-vu. (15)
Thus Eq. (14) becomes

dP/dt=/pad<r—i—/ pu(v—u)-nds. (16)

Again, let the local velocity of the control
surface be equal to the local fluid velocity (v=u).
The system ¢ is then a system of constant mass
and the time rate of change of its momentum is
equal to the external force F acting on it. Thus

it 1s found that
/ pado=PF.

Again, this result is general because the first
integral on the right side of Eq. (16) is inde-
pendent of v; Eq. (17) is a statement of Newton’s
law of motion for the fluid which instantaneously
occupies the control volume o.

Equation (16) becomes

(17)

F= (dP/dt)—l—/ ou(u—v)-nds. (18)

It can be seen that Eq. (18) reduces to the usual
law for a system of constant mass M, namely,

F=dP/d:. (19)

Another special case of interest is that in which
the control volume ¢ is at rest (v=0). For this
case

F = (dP/dt)+ / punnds. (20)
If Eq. (11) is substituted into Eq. (18)
dpu
F=/——da+/ puu-nds. (21)
¢ d¢ s



SYSTEM OF VARIABLE MASS

This last equation is valid regardless of the
motion of ¢ since ¥ has been eliminated without
making any special assumptions about the
motion of ¢. It is a statement of the instantaneous
conditions and is valid if the control volume is
fixed (v=0) or if the control volume moves with
the fluid (v=mu).

Now the concept of center of mass will be
introduced. The position R* of the center of mass
of the fluid which instantaneously occupies ¢ is
defined by

MR*=/p1‘do’. (22}
Hence, upon taking the derivative,
MV*= (d/dt)f orde—R*({dM/dt), (23)
where
V*=dR*/dL. 24)
From Eq. (1)
d r Opr
—-/ prd¢7=/ ——~do’+[ oV ends. (25)
dat) s s Of s

The divergence theorem for the mass-moment
flux tensor pru states that

[ pru«nds= / V- pruda.

On adding Eqgs. (25) and {26) we obtain
a r f9pr

— / prda'=/ (_———[—v-pru)da

dt) . s \ 02

—i—/pr(v—-u)-nds. (27

(26)

Expanding the integrand of the first integral on
the right side of Eq. (27) and applying Eq. (7)
gives

d - f 3r
—-/ prde =/ (p——~f—pu- Vr)da
dtJ . s \ O

—{—/ pr{v—u) -uds. (28)
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The velocity field u of the fluid is identically
equal to

u=dr/di=(9r/9t) +u- Vr. (29)

On substituting into Eq. (28)
(d/dt)[ prda'=f puala—i—/ pr(v—u)-nds. (30)

The first integral on the right side of Eq. (30)
is just the momentum P of the fluid which

instantaneously occupies system o. [See Eq.
{10).7] Thus,

(d/dt)/ pfdo‘zp“i—[ pr{v—u)-nds. (31)

Substituting Egs. (8) and (31) into Eq. (23)
gives

MV*=P+/p(r—R*)(v~u)-nds, (32)

from which

dP 4 d
= (M V¥) +~f p@—R*)(u—v)-nds. {(33)
dt dt di &

If the local wvelocity v of each point of the
surface s of control volume ¢ is identical with the
velocity field of the fluid u, then ¢ is again a
closed system of constant mass M. In this
special case Eq. (33) reduces to

dP/dt=(d/dt) (MV*) = MA¥, (34)
where
A¥=dV*/dt. {(35)

Upon substituting Eq. (33) into Eq. (18) there
is obtained

d
Fzg—(MV*)j‘—[ pu{u—v) -nds
¢ s

d
- f p@—R*) (u—v)-nds. (36)

Equation (36) is the momentum theorem for a
continuous system of variable mass in terms of
the motion of the center of mass. This equation
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shows that in the special case where the mass of
the system is constant (in which case v=u), then

F = (d/dt) (MV*). (37

A common conception of Eq. (37) is that it is a
valid equation for a system of variable mass and
reduces as a special case, when mass is constant,
to

F=MA* (38)

This conception is not correct. Equation (36)
shows that Eq. (37) is valid only if M =constant
in which case it is entirely equivalent to Eq. (38).

The second special case of interest is that in
which the control volume ¢ is at rest (v=0).

THORPE

This gives

d
F=d—(MV*)—!—/ putt-nds
¢ s

d
4+ / pr—R¥u-nds. (39)
dt)s

In addition to the theorems derived above,
various other theorems may be derived by using
the same metheds. For example; to derive the
first Jaw of thermodynamics, as it applies for a
moving control volume, it is necessary only to
let the field function f be equal to the total
internal energy density peo.



