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1 The general analysis

Let us consider two coherent travelling periodic waves of the form:

E1(r1, t) = Em1(r1) sin(ωt− kr1), (1)

E2(r2, t) = Em2(r2) sin(ωt− kr2), (2)

where r1 and r2 are the distances from sources s1 and s2 to the observation
point M ; ω is the angular frequency; k = 2π/λ is the wave number; Em1,2

are the waves amplitudes at point M .
According to the superposition principle, the resulting wave is also trav-

elling:
E = E1 + E2 = Em(r1, r2) sin(ωt+ φ0(r1, r2)), (3)

where

Em =
√

E2
m1 + E2

m2 + 2Em1Em2 cos (k|r2 − r1|), (4)

tanφ0 = −Em1 sin kr1 + Em2 sin kr2
Em1 cos kr1 + Em2 cos kr2

, (5)

Here Em is the wave amplitude; φ0 is the initial phase. Below we consider
two particular cases.
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2 The case of plane waves

In this case Em1,2 = E0 = const. Then, equations (4) and (5) transforms to

Em = 2E0

∣∣∣∣cos(k|r2 − r1|
2

)∣∣∣∣, (6)

φ0 =
k(r1 + r2)

2
. (7)

Considering equation (7), we conclude that condition of constant initial
phase that defines the shape of the wave fronts is the following:

r1 + r2 = const. (8)

Therefore, the wave fronts represent a set of confocal ellipsoids of revolution
(figure 1). Wherein, point sources s1 and s2 are located at two common foci

Figure 1: The wave fronts (confocal ellipses) and wave rays (confocal hyper-
bolas) of the resulting wave in the case of interference of two plane waves.
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of these ellipsoids. It means that in the case of two plane wave interference
the resulting travelling wave is an ellipsoidal wave.

An important property of the confocal ellipses and hyperbolas is that they
form an orthogonal net of curves. Thus, the ellipsoidal waves propagate along
confocal hyperbolas. According to equation (6), the intensity of the resulting
wave remains constant precisely along these hyperbolas (r2 − r1 = const).
The maximum irradiance (constructive interference) is achieved along those
hyperbolas (bulge lines) that satisfy the condition:

|r2 − r1| = mλ, (9)

where m = 0, 1, 2, . . . The minimum (zero) irradiance (destructive interfer-
ence) corresponds to those hyperbolas (nodal lines) that satisfy the condition:

|r2 − r1| = (2m+ 1)
λ

2
. (10)

Since, for an arbitrary hyperbola |r2 − r1| ≤ d, where d is the distance
between its foci, we have that the number of nodal lines Nn is finite and
equal to

Nn = 2⌈d/λ− 1/2⌉, (11)

where ⌈z⌉ is the ceiling function. The number of bulge lines Nb is found as

Nb = 2⌊d/λ⌋+ 1, (12)

where where ⌊z⌋ is the floor function.
If d ≫ λ, the number of the nodal and bulge lines can be very large.

In the opposite case, when d < λ/2, there only one (bulge) line which is a
straight line passing through the middle of the segment connecting the foci.

Finally, given the reflective property of an ellipse (the normal to any point
of the ellipse forms equal acute angles with the focal radii of this point), we
conclude that in the case of crossed plane waves, the energy transfer occurs
along the bisector of the angle formed by them.

3 The case of spherical waves

In this case Em1,2 = A/r1,2, where A = const. Using equations (4), (5), we
find:

I = I0

(
1

r̃21
+

1

r̃22
+

2 cos (2πα|r̃2 − r̃1|)
r̃1r̃2

)
, (13)
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φ0 = − arctan


sin (2παr̃1)

r̃1
+

sin (2παr̃2)

r̃2
cos (2παr̃1)

r̃1
+

cos (2παr̃2)

r̃2

 , (14)

where I = nε0cE
2
m/2 is the irradiance (n is the refractive index of the medium

of propagation; ε0 is the vacuum permittivity; c is is the speed of light in
vacuum); I0 = nε0cA

2/(2d2) is the characteristic irradiance; α = d/λ is the
characteristic parameter of the theory; r̃1,2 = r1,2/d are the relative (dimen-
sionless) distances. If we introduce a two-dimensional Cartesian coordinate
system x− y such that the origin O is located midway between the sources
s1 and s2, and the y-axis passes through them, then

r̃1,2 =

√
x̃2 +

(
ỹ ± 1

2

)2

, (15)

where x̃ = x/d, x̃ = x/d are the dimensionless coordinates.
Equations (13), (15) allows one to visualize the distribution of the irradi-

ance in an arbitrary x− y plane. In figure 2 we plot the set of contour lines
of equal irradiance in the case of interference of two spherical waves. Close

Figure 2: The set of four contour lines of equal irradiance I in the case of
interference of two spherical waves. Contours: I = 100I0; I = I0; I = 0.1I0;
I = 0.02I0.

to the sources, these lines are nearly concentric, while at a sufficient distance
from them, the lines form ”rosettes with petals”. As in the case of plane
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waves, the lines of local maxima and minima (I = 0) form hyperbolas, which
are defined by equations (9) and (10). The only difference is that along the
lines of local maxima, the irradiance does not remain constant but decreases
proportionally to (1/r1 + 1/r2)

2. The lines of local maxima are the geometric
locus of points corresponding to the peaks of the ”petals”. The lines of local
minima are the geometric locus of points where the ”petals” connect.

Figure 3 shows the set of contour lines of the same phase in the case
of interference of two spherical waves. Close to the sources, these lines are

Figure 3: The set of contour lines of the equal initial phase φ0 = 0 in the
case of interference of two spherical waves.

nearly concentric, while at a sufficient distance from them, they are closed
curves containing inflection points. The lines of the irradiance local minima
are precisely the geometric locus of a set of inflection points. As α increases,
the mesh of these contour lines becomes more ”sparse”.
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